58^2+40^2=b^2

Simple and best practice solution for 58^2+40^2=b^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 58^2+40^2=b^2 equation:



58^2+40^2=b^2
We move all terms to the left:
58^2+40^2-(b^2)=0
We add all the numbers together, and all the variables
-1b^2+4964=0
a = -1; b = 0; c = +4964;
Δ = b2-4ac
Δ = 02-4·(-1)·4964
Δ = 19856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19856}=\sqrt{16*1241}=\sqrt{16}*\sqrt{1241}=4\sqrt{1241}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1241}}{2*-1}=\frac{0-4\sqrt{1241}}{-2} =-\frac{4\sqrt{1241}}{-2} =-\frac{2\sqrt{1241}}{-1} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1241}}{2*-1}=\frac{0+4\sqrt{1241}}{-2} =\frac{4\sqrt{1241}}{-2} =\frac{2\sqrt{1241}}{-1} $

See similar equations:

| X=3(2x+4)=2+6x+10 | | 176^2+210^2=c^2 | | 15x+1,200=30x+500 | | 3+9=x | | 4m–3=21 | | 3(-b-5)=-5 | | 56+m=-68 | | 2t+1t=5 | | 2(x-4)^2+8=80 | | 25+7=x | | v-72/5=3 | | 4y-3×=6 | | 9=10s-21 | | 1+x=-7x–8(-x+1) | | 39m+.15=55.05 | | 20=4(x/5-2) | | 3.2+d=7 | | -8v+7=29 | | x=500/7.5 | | 20x+121=308 | | 8x-4=x-4 | | 2(-5)-4y=10 | | 130+6x-Y+4X+Y=360 | | g/2+8=18 | | q+2/6=1/6 | | 20x+11*11=308 | | 19=1+3j | | 61=9f-20 | | -5/3-19/5x8=-24+7/15 | | z+8/2=10 | | 90+2x=30 | | s+45/8=9 |

Equations solver categories